
See-n-Pick: Object Detection & Segregation using Mirobot

Fengyi Jiang1 Tarun Rajnish1 Alejandro Romero1

fengyi jiang@brown.edu tarun rajnish@brown.edu alejandro romero@brown.edu

1Brown University
https://github.com/FJiangArthur/2952O_Final_Project

Figure 1: Graphical output of the Yolov5 object detection
framework showing coordinates of a toy car relative to the

Mirobot robot.

Abstract

Object identification and segregation have been basic
necessities of industry since the dawn of the industrial rev-
olution. Different methods have been invented and refined
over time in order to do such jobs efficiently and quickly.
Many companies now utilize robots and cameras to cor-
rectly identify objects on conveyor belts and sort or segre-
gate them based on certain destinations or attributes. How-
ever, such high-quality sensors and robots come at a high
cost, and state-of-the-art robotic automation necessitates
a significant investment. These robots and activities are
rarely generalizable. We demonstrate an end-to-end indus-
trial object identification and separation procedure in this
study and developed a groundwork for future exploration.
In order to do this, we use the Intel Realsense depth cam-
era, the Mirobot robotic arm and two object detection neu-
ral network models. Our process is low-cost and precise.
We augment it with a user-customizable web application
that enhances generalizability and gives the user more con-
trol over how a task should be completed. We show how
well-formulated pipelines and powerful object detection al-
gorithms may replace expensive sensors, robots, and non-
generalizable logic.

Figure 2: The MaskRCNN object detection framework
displaying coordinates of objects relative to the Mirobot

robot (left) and the robot sorting the objects (right).

1. Introduction

Highly complicated robots and sensors are typically em-
ployed in industries such as automotive, packaging, and de-
livery to detect diverse parts, packages, and other objects
and separate or sort them based on an end purpose. Typi-
cally, these robots, cameras, and sensors are costly and non-
generalizable. For example, the Da Vinci Xi robot [10],
which is designed to perform surgery with the help of com-
puter vision algorithms, costs between $1.855 million and
$2.3 million.

Humans, on the other hand, can easily change their ac-
tions based on eyesight and previous experience. To that
end, we explore if by using visual feedback and computer
vision approaches, we can achieve high precision and con-
trol while keeping costs low and generalizability high.

We can observe that today’s robotic manipulation labor
entails highly specialized activities. Each robot is designed
to meet a specific requirement, and there is often little room
for additional customization. We propose a web applica-
tion for our workflow in this paper, which will give the end
user additional control over the robotic arm and separation
methods, satisfying the demand for generalizability.

We utilize the Mirobot [12], a low-cost desktop robotic
arm, to imitate an end-to-end industrial operation at a
smaller scale. From object identification to packaging,

https://github.com/FJiangArthur/2952O_Final_Project

Figure 3: High level architecture of the project. Our
approach takes in input depth data to perform

transformation calculations to translate coordinates to the
Mirobot’s world space. These modified values are then fed

to the Mirobot to perform the desired action sequence.

package identification, transportation, and delivery, we
replicate the complete process. The Intel Realsense [7], a
stereoscopic depth camera that costs around $320, is the
camera we employ for our purposes. We evaluate two
prominent computer vision object detection neural net mod-
els, Yolov5 [11] and MaskRCNN [4], in order to accurately
identify object classes.

Object detection and picking are performed using Re-
alsense, Yolov5, and Mirobot, followed by packaging de-
pending on object class. Animals and automobiles are two
of the classes we consider. After that, the package is trans-
ferred to a transporter bot, which carries it to the delivery
station. Here, Realsense is utilized once more, but this
time in conjunction with MaskRCNN, to identify the cor-
rect class package and divide it into clusters. Our online
application, built with Flask and React, can control these
actions. Finally, the transporter bot is employed to deliver
the package and bring our workflow simulation to a close.
Section 3 contains further implementation details.

2. Related Work

2.1. Manipulation with Visual Feedback Closed
Loop

With recent advancements in deep learning, great effort
has been made to directly map visual observations to robotic
control tasks. In 2015, S. Levine [8] proposed the idea to
train a network for learning perception and control methods
jointly end-to-end for better performance on robotic manip-
ulation tasks. Such methods do not require hand-crafting
perception or low-level control components. J. Pachocki [5]
proposed methods to learn in-hand manipulation through
reinforcement learning (RL) through training in simulated
environments and then transferring and testing these learned
heuristics in the physical world. Another interesting method
proposed by A. Morgan [2] trained a network to carry out
object 6D pose tracking and achieved high prevision con-

trol on the robotic arm without force sensors or precision
manipulators by relying on the vision feedback loop.

2.2. Reinforcement learning and self-supervised
learning

Since data intervention can be expensive in robotic ma-
nipulation tasks, self-supervised learning and reinforce-
ment learning can help obtain optimal models in such
cases. Lucas Manuelli [9] demonstrated the possibility of
self-supervised visual learning in robotic manipulation and
showed such methods provide better generalization, espe-
cially in scenes involving occlusion. F. Ebert [3] proposed
a vision based self-supervised method for robotic manipu-
lation from raw sensor inputs that can generalize well on
both rigid and deformable novel objects. However, such a
method cannot handle occlusion or long-term execution and
can only handle manipulating one to two objects in a single
execution.

3. Method
3.1. Web Application

To increase generalizability, we support our work with a
customizable and user-friendly web application. This web
application allows the end user to observe object detection
progress, change segregation criteria, and add new models
and features (Figure 4).

Figure 4: Diagram mapping the main functionality of the
web application

Python and the Flask framework are used to build the
backend. The backend’s primary function is to interface
with the multiple model scripts and feed data to the Mirobot.
The Wlkata Studio Python SDK is also used to control the
Mirobot.

Create-react-app is used to build the frontend in React. It
comprises of a simple dashboard with a variety of options in
the form of button controls for running specific scripts and
viewing the realsense camera stream. React router is used
to route REST calls that are mapped to different pathways
and send them to the backend.

To serve frames from the backend to the frontend, we use
the OpenCV Python library. One of the challenges we faced
was overcoming the lag that occurred while serving frames.

Toy Car Depth (m) Toy Sheep Depth (m)
Toy Car
Ground Truth 0.47

Toy Sheep
Ground Truth 0.30

Experiment 1 0.632 Experiment 1 0.471
Experiment 2 0.811 Experiment 2 0.000
Experiment 3 0.000 Experiment 3 0.512
Experiment 4 0.733 Experiment 4 0.423
Experiment 5 0.000 Experiment 5 0.545
Experiment 6 0.851 Experiment 6 0.000

Table 1. Running YOLOv5 on toy cars and toy sheep placed 0.47m
and 0.3m away from center of the OAK-D-Lite camera.

3.2. OpenCV AI Kit Camera by DepthAI

At the onset of the project, we carried out instance seg-
mentation through the Luxonis OAK-D-Lite camera, which
has high resolution spatial vision and embedded machine
learning capabilities. The goal of using OAK-D-Lite was to
implement a simple pipeline for prototyping as the OAK-
D-Lite was built with hardware, software and firmware in-
tegration in mind. It has an onboard Vision Processing Unit
(VPU) that allows developers to run off-the-shelf computer
vision models for pilot testing without extensive GPU re-
sources.

We used the pre-processed YOLOv5 model that has
been pre-compiled into MyriadX blob format, optimized
for inference on the VPU processor on OAK-D-Lite. The
YOLOv5 model was used for object detection on a single
RGB-D camera input and the bounding box results are fused
with the depth information calculated in real-time through
semi-global matching. The central pixel of the bounding
box is used to generate the depth results of segmented ob-
jects, and with the intrinsics of the camera known, object
locations in 3D space can be calculated.

However, not until later in the project did we realize that
the depth information calculated onboard has a large mar-
gin of error for our specific use case where the camera is
mounted near the Mirobot within a 1m range. Our exper-
iment in Table 1 shows that depth information on a single
object varies largely and created issue for Mirobot manipu-
lation.

3.3. ROS

Robotic Operating System (ROS) provides essential
tools such as a hand-eye calibration toolkit, reverse/forward
kinematics, communication channels between processes,
error handling, and recovery. The team initially used RViZ
and Gazebo for integration and simulation between Re-
alSense and ROS. Due to the limited capabilities of the Par-
allel Desktop virtual machine running on OSX, RealSense
encountered serial port driver buffer overflow issues on
Ubuntu 16.04 with ROS Kinetic, and we resolved the issue

by moving to Ubuntu 18.04 (with ROS Melodic) and 20.04
(with ROS 2 Galactic). With limited capabilities in Ubuntu
16.04 and ROS Kinetic, the team rewrote the Mirobot pro-
vided ROS package mirobot-urdf-2 to run in the ROS 2 en-
vironment, which involves makefile changes, package up-
grades, and switching from the catkin-make to the ament
build tool. All changes can be found in the project Github
repo under the ROS branch.

We decided not to continue development under this ROS
method due mainly to the missing capabilities to control the
Mirobot end-effector through ROS. Mirobot provides great
python APIs for upper level extraction, but its ROS pack-
age is still under development and provides moving joint
functionalities only. Extending such functionalities can be
achieved by drilling deeper into the middle-ware C code,
however it’s beyond the scope of this project.

3.4. YOLO v5 [6]

We selected YOLOv5 for instance segmentation for its
wide range of classes, speed, and accuracy, and used it to
manipulate the Mirobot without the need of explicit rig-
dependent calibration. We place an object image, recogniz-
able by the YOLOv5 model, on the Mirobot’s end-effector.
We then minimize the distance between said object image
and the target. We tested out various printed objects images
including ”bicycle”, ”truck”, and ”scooter” and found that
the object class ”clock” can be recognized best regardless
of the orientation of the end-effector.

Following the official implementation of the YOLOv5
model [6] and getting the bounding box through RGB-D
outputs of the RealSense, we randomly select several points
within the bounding box, get the corresponding depth in-
formation from the RealSense point cloud, and average out
these depths to output a single depth value of the object rel-
ative to the camera. Similar to the OpenCV AI Kit imple-
mentation, camera intrinsics were then used for 3D coordi-
nate calculation. During testing of the above method, we
found that the end-effector depth value was always faulty
even though the depth of the target objects were accurate.
The 3D coordinate calculated from depth values carries
such error and results in failure of manipulation for most
trials.

3.5. MaskRCNN [1]

We employed MaskRCNN [1] on the Realsense im-
age segmentation task as another potential integration for
Mirobot. We trained the model to identify table-top ob-
jects. Specifically, we wanted to sort between vehicle toys
and animal toys. We feed the Realsense camera feed to the
MaskRCNN framework to present a graphical interface dis-
playing object masks and corresponding labels, which dis-
play the object name and distance from the camera (Figure
2).

We then perform a rudimentary coordinate-based scene
mapping to create a set of instructions for the Mirobot robot
to follow. It ignores all objects in the drop-off zone to pre-
vent picking up objects that have already been sorted. The
algorithm takes all objects it recognizes (in this case, we
specified only animal and vehicle toys could be acted upon)
and stores them in a queue. For each item in the queue, the
algorithm uses the central x and y coordinates of its object
mask, and its depth as the z coordinate. These coordinates
are then translated from the Realsense camera’s coordinate
space to the Mirobot’s world space.

The resulting coordinates are then passed into Mirobot
command prompts, which have the robotic arm pick up the
object. It then selects the correct drop-off location based on
the object’s class (animal or vehicle). These target locations
were predetermined, but the vision model can be used to de-
termine these locations in real-time by using markers such
as ARTags.

4. Results

We met our main goal by successfully integrating
MaskRCNN, RealSense, Mirobot, and a Flask web appli-
cation for low-cost production line manipulation tasks, and
have proven that it’s possible to achieve high precision con-
trol without expensive equipment. Our approach resulted
in successful object detection and segregation using the
MaskRCNN-Mirobot integration, which provided reliable
performance on the task.

Our approach failed on the manipulation task through
YOLOv5. We implemented the general pipeline for a fine-
control task using a closed feedback loop, but due to inaccu-
racies in depth data from the Realsense and coordinate data
from Mirobot, we were unable to reliably succeed at the
task via this approach. Future work may encompass finding
the root cause for the mismatching depth information and
implementing an algorithm such as a running average or a
low-pass filter for noise control to produce more accurate
behavior.

5. Conclusion

We formulated a low-cost and precise pipeline for lever-
aging state-of-the-art object detection techniques to inform
the robotic manipulation task of object sorting. Though we
encountered issues with noisy input data resulting in inac-
curacies during one of our tasks, our work creates a gen-
eralizable framework that allows users to integrate various
computer vision algorithms with the Mirobot robot, elimi-
nating the need for explicit camera calibration and simula-
tion via ROS. Additionally, we present a method for pro-
viding control of the pipeline to an end user via a novel web
application.

6. Future Work
Though our work’s main contribution is a comparison of

different computer vision techniques for performing object
sorting tasks inexpensively and in a generalizable format, it
has many other potential avenues of expansion. For one, we
explored a rudimentary closed feedback loop for real-time
error correction as an alternative to explicit camera calibra-
tion. This loop could use further refinement such as by inte-
grating an on-board camera mounted onto the robot’s end-
effector to better inform mid-flight trajectory adjustments.
Further, we set the groundwork for an open source web ap-
plication allowing users to remotely operate and supervise
the robot arms. This web application can be further devel-
oped to allow for more fine-grained user control. We only
use one depth camera and could benefit from the integration
of various simultaneous camera feeds to increase accuracy
in both object localization and robotic manipulation.

7. Division of Labour
7.1. Tarun Rajnish

Worked primarily on full-stack web application devel-
opment in order to tie the MaskRCNN and YOLOv5
scripts between the front-end and the Mirobot. The back-
end server was developed using the Flask framework and
Python, while the front-end was in React. Assisted in the
creation of the transporter bot. Helped with the presenta-
tion slides, the poster, and the final report.

7.2. Fengyi Jiang

Experimented on ROS Integration with Mirobot through
MoveIt for Inverse Kinematics, forward Kinematics, col-
lision prevention, cartesian path planning, ROS-bridge for
communication between ROS and external python process,
hand-eye calibration using easy-handeye. Experimented
on OpenCV AI Kit for instance segmentation and extract-
ing 3D coordinates of the objects. Implemented YOLOv5
for instance segmentation and object 3D coordinate extrac-
tion. Experimented in controlling the Mirobot by minimiz-
ing the distance between target and Mirobot end-effector.
Integrated the feedback model with Mirobot to perform the
manipulation task.

7.3. Alejandro Romero

Developed the MaskRCNN solution, which included in-
tegrating the Realsense camera with the computer vision
model, visualizing the model’s output, and writing trans-
formation calculations for converting from Realsense coor-
dinates to 3D coordinates in the Mirobot world space. Han-
dled the Mirobot command queue and motion planning. As-
sisted in creation of the transporter bot as well as testing the
functionality of the web application. Helped with the pre-
sentation slides, the poster, and the final report.

References
[1] Waleed Abdulla. Mask r-cnn for object detection and in-

stance segmentation on keras and tensorflow. https://
github.com/matterport/Mask_RCNN, 2017. 3

[2] Junchi Liang Abdeslam Boularias Aaron M. Dollar1 Andrew
S. Morgan, Bowen Wen and Kostas Bekris. “vision-driven
compliant manipulation for reliable, high-precision assem-
bly tasks”. Robotics: Science and Systems, 2021. 2

[3] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie,
Alex Lee, and Sergey Levine. Visual foresight: Model-based
deep reinforcement learning for vision-based robotic control,
2018. 2

[4] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. ICCV, 2017. 2

[5] M. Plappert G. Powell A. Ray et al. J. Pachocki, A. Petron.
“learning dexterous in-hand manipulation”. The Interna-
tional Journal of Robotics Research, vol. 39, no. 1, pp. 3–20,
2020. 2

[6] Glenn Jocher. ultralytics/yolov5: v3.1 - Bug Fixes and
Performance Improvements. https://github.com/
ultralytics/yolov5, Oct. 2020. 3

[7] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-
Jepsen, and Achintya Bhowmik. Intel realsense stereoscopic
depth cameras. CVPR, 2017. 2

[8] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies,
2015. 2

[9] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ
Tedrake. Keypoints into the future: Self-supervised corre-
spondence in model-based reinforcement learning, 2020. 2

[10] James Chi-Yong Ngu, Charles Bih-Shiou Tsang, and Dean
Chi-Siong Koh. The da vinci xi: a review of its capabilities,
versatility, and potential role in robotic colorectal surgery.
NIH, 2017. 1

[11] Ultralytics. Yolov5. GitHub, 2022. 2
[12] Dongxu Zhou, Ruiqing Jia, and Mingzuo Xie. Mirobot: A

low-cost 6-dof educational desktop robot. Springer Link,
2021. 1

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

	. Introduction
	. Related Work
	. Manipulation with Visual Feedback Closed Loop
	. Reinforcement learning and self-supervised learning

	. Method
	. Web Application
	. OpenCV AI Kit Camera by DepthAI
	. ROS
	. YOLO v5 yolov5
	. MaskRCNN maskrcnn

	. Results
	. Conclusion
	. Future Work
	. Division of Labour
	. Tarun Rajnish
	. Fengyi Jiang
	. Alejandro Romero

